Generalized Hamiltonian point vortex dynamics on arbitrary domains using the method of fundamental solutions

نویسندگان

  • T. L. Ashbee
  • J. G. Esler
  • N. R. McDonald
چکیده

A new algorithm (VOR-MFS) is presented for the solution of a generalized Hamiltonian model of point vortex dynamics in an arbitrary two-dimensional computational domain. The VOR-MFS algorithm utilizes the method of fundamental solutions (MFS) to obtain an approximation to the model Hamiltonian by solution of an appropriate boundary value problem. Unlike standard point vortex methods, VOR-MFS requires knowledge only of the free-space (R) Green’s function for the problem as opposed to the domain-adapted Green’s function, permitting solution of a much wider range of problems. VOR-MFS is first validated against a vortex image model for the case of (2D Euler) multiple vortex motion in both circular and ‘Neumann-oval’ shaped domains. It is then demonstrated that VOR-MFS can solve for quasi-geostrophic shallow water point vortex motion in the same domains. The exponential convergence of the MFS method is shown to lead to good conservation properties for each of the solutions presented. 2013 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Quasi-periodic Dynamics of Desingularized Vortex Models

Sufficient conditions for the existence of quasi-pe~odic solutions of two different desingularized vortex models for 2-dimensional Euler flows are derived. One of these modds is the vortex blob model for the evolution of a periodic vortex sheet and the other is a second order elliptic moment model (DEMM) for the evolution of widely separated vortex regions. The method involves the identificatio...

متن کامل

Fundamental Solutions of Dynamic Poroelasticity and Generalized Termoelasticity

Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by...

متن کامل

Numerical Simulation of the Incompressible Laminar Flow Over a Square Cylinder

Simulation of fluid flow over a square cylinder can be performed in order to understand the physics of the flow over bluff bodies. In the current study, incompressible laminar flow over a confined square cylinder, with variable blockage factor has been simulated numerically, using computational fluid dynamics (CFD). The focus has been on vortex-induced vibration (VIV) of the cylinder. Vorticity...

متن کامل

The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with N point vortices

This paper studies the dynamical fluid plus rigid-body system consisting of a two-dimensional rigid cylinder of general cross-sectional shape interacting with N point vortices. We derive the equations of motion for this system and show that, in particular, if the vortex strengths sum to zero and the rigid-body has a circular shape, the equations are Hamiltonian with respect to a Poisson bracket...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 246  شماره 

صفحات  -

تاریخ انتشار 2013